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Abstract: The environment representation is essential for driving assistance. However, the performances achieved in 
complex environments are still unsatisfactory regarding the accuracy, confidence and real time capabilities. 
This paper presents a real-time 2.5D environment representation model, for driving scenarios, based on 
object delimiters extraction from a 3D occupancy grid obtained from dense stereo. We propose two 
approaches to extract the polyline delimiters: an improved contour tracing called 3A Tracing and a polyline 
extraction method through the occupancy grid radial scanning. The advantages and drawbacks for each of 
these methods have been discussed. 

1 INTRODUCTION 

In the context of in-vehicle navigation systems, the 
environment perception and its convenient 
representation is an important requirement (Pijpers, 
2007). The process of environment representation 
building has to be accurate and characterized by a 
low computational cost. 

Usually, the Driving Assistance Applications 
detect the objects through 2D or 3D points grouping 
processes. The detected objects are represented by 
geometric primitives such as 2D bounding boxes 
(Dellaert, 1997) or 3D cuboids (Nedevschi, 2007). 
As an alternative approach, the objects may be 
represented by polylines. One of the advantages of 
the polyline based objects representation is the close 
approximation of the object contour by the 
polygonal model while having a number of vertices 
as small as possible. In the same time the polyline 
could inherit the type, position and height properties 
of the associated object.    

The polyline object representation may lead to 
the creation of subsequent algorithms that are 
computationally fast due to the fact that only a small 
subset of points is employed.  

The road feature identification through the object 
delimiters detection can be used in the unstructured 
environments as an alternative solution to the lane 
detection algorithms. 

The object delimiters extraction is studied in 
some areas like mobile robots (Harati 2007, Magin 
1994, Joshi 2002, Laviers 2004, and Veeck 2004), or 
autonomous vehicle systems (Kolski 2006, 
Madhavan 2002, and Goncalves 2007). The polyline 
representation is very common in many algorithms, 
such as localization and mapping (Joshi 2002, 
Laviers 2004, Veeck 2004, and Madhavan 2002), 
contour tracking (Prakash, 2007) and path planning 
(Madhavan, 2002). 

The polyline extraction methods differ by the 
nature of the information as well as by the sensors 
used for data acquisition process. Current systems 
use laser (Harati 2007, Veeck 2004, Kolski 2006, 
and Madhavan 2002), sonar (Goncalves 2007, and 
Laviers 2004) or vision sensors (Goncalves 2007). 

Two main directions can be distinguished for the 
delimiters extraction: 
� The contour processing of already detected 

objects from the scene (Gonzales 2002); 
� The radial scanning of the environment. 

This method is common for the systems based 
on sonar or laser sensors (Harati 2007, and 
Kolski 2006). 

 
A method for map representation as a set of line 

segments or polylines is described in (Laviers, 
2004). An occupancy grid is created here from sonar 
information. The data is converted to a list of 



 

vertices using the Douglas Peucker line reduction 
algorithm. 

In (Veeck, 2004) a method that learns sets of 
polylines from laser range information is presented. 
The polylines are iteratively optimized using the 
Bayesian Information Criterion. 

The polyline representation was chosen in 
(Madhavan, 2002) for terrain-aided localization of 
autonomous vehicle. The new range data obtained 
from the sensor are integrated into the polyline map 
by attaching line segments to the end of the polyline 
as the vehicle moves gradually along the tunnel. 

In this paper we present and evaluate several 
methods for real-time environment representation by 
extracting object delimiters from the traffic scenes 
using a Dense Stereovision System (Nedevschi, 
2007). The delimiters detection is based on 
processing the information provided by a 3D 
classified occupancy grid obtained from the raw 
dense stereo information. One of the problems in 
representing the environment through the occupancy 
grid is a large volume of data. Therefore we propose 
a more compact 2.5D model by representing the 
environment as a set of polylines with associated 
height features. We present two approaches to 
extract object delimiters: 
� The 3A Tracing. The classical algorithm for 

contour tracing is improved by developing a 
new method named 3A Tracing Algorithm; 

� The radial scanning of the occupancy grid. 
We have developed a Border Scanning 
method that is able to detect delimiters of 
complex objects taking into account the nature 
of information from the traffic scene (curb, 
object, and road). 

A polyline map is generated as the result of the 
delimiters extraction process. Each polyline element 
inherits the type (object, curb), position and height 
properties of the associated objects from the 
occupancy grid. 
    

In the next section, we describe the proposed 
Delimiters Extraction architecture. The delimiters 
detection approaches are presented in section 3. 
Experimental results are given in section 4, and 
section 5 concludes the paper with final remarks. 

2 PROPOSED ARCHITECTURE 

Our delimiters detection approaches have been 
conceived for an urban driving assistance system. 
We extended our Dense Stereo-Based Object 
Recognition System (DESBOR) by developing an 
Object Delimiters Detection component. A detailed 

description about the DESBOR system is presented 
in (Nedevschi, 2007).  

The Object Delimiters Detection system 
architecture consists in the following modules (see 
Figure 1): 

 

Figure 1: System Architecture. 

TYZX Hardware Stereo Machine The 3D 
reconstruction is performed by the “TYZX” 
hardware board (Woodill, 2004). 

Reconstructed 3D Points The reconstructed 3D 
points are used for the occupancy grid generation. 

 

 

Figure 2 The Occupancy Grid (c) is computed from the 
Elevation Map (b) of a scene (a). The occupancy grid cells 
are roughly classified (blue – road, yellow – traffic isle, 
red – obstacles) 

Occupancy Grid Computation The occupancy 
grid (see Figure 2.c) represents a description of the 
scene, computed from the raw dense stereo 
information represented as a digital elevation map 
(see Figure 2.b). The occupancy grid cells are 



 

classified into road, traffic isle and object cells. A 
detailed description about the occupancy grid 
computation is presented in (Oniga, 2007). 

Object Delimiters Detection The Object 
Delimiters detection uses the occupancy grid results 
as the input and generates a set of unstructured 
polygons approximated with the objects contour. 
The delimiters can be extracted from the occupancy 
grid through both 3A Tracing and Border Scanning 
algorithms. 

Object Delimiters Detection Output A polyline 
map is generated as the result of delimiters 
extraction process. For each polyline element we 
keep the following information: a list of vertices, the 
delimiter type (object, curb), and the height of the 
object for which we apply the polyline extraction. 

 

Figure3: The car coordinate system. 

It must be noted that the car coordinate system 
coincide with the world coordinate system having its 
origin on the ground in front of the car (see Figure 
3). The position and orientation of the stereo 
cameras are determined by the absolute extrinsic 
parameters (Marita, 2006}. 

3 OBJECT DELIMITERS 
EXTRACTION APPROACHES 

A set of steps have been identified for the delimiters 
extraction: 

Step 1: Object Labeling. In this step each object 
from the occupancy grid is labeled with a unique 
identifier. 

Step 2: The contour extraction. We compute 
the contours of the non-drivable blobs (objects, 
traffic isles) from the occupancy grid. Each contour 
point will represent a single cell in the grid map. 

Step 3: The polygonal approximation. Given a 
curve C we will find a polygon that closely 
approximates C while having as small a number of 
vertices as possible. 

Next, we will present several algorithms 
developed by us for delimiters extraction. All these 
methods have in common the 1st and 3rd step. The 2nd 
step is different in each case. We have used two 
main approaches for the contour extraction: 

1) The Contour Tracing for a given object - 
once an object cell has been identified, contour 
tracing is performed starting from this point, adding 
each traversed cell to the current contour. In this 
paper we present an improved version of contour 
tracing, the 3A Tracing Algorithm. 

2) The Border Scanning – a radial scanning is 
performed with a given radial step, traversing the 
interest zone and accumulating the contour points at 
the same time. The main difference of this approach 
is that we scan only the visible parts from the ego-
car position. Two main improvements of the Border 
Scanning method are discussed: the Border 
Scanning using a variable step, and the Combined 
Border Scanning, taking into account the occupancy 
grid blob’s nature (traffic isles, obstacles). 

3.1 The 3A Tracing Algorithm 

The classical contour tracing algorithm collects the 
contour points of an object by traversing the object 
boundary. 

 

Figure 4: Contour tracing of the care points (b) from the 
scene (a). There are cases when two polygonal segments 
can intersect each other (c), after the polygonal 
approximation of the car contour. 



 

A disadvantage of the classical algorithm is that 
there are cases when the same delimiter point can be 
passed many times. This may lead to the incorrect 
representation, after the contour approximation step 
(see Figure 4). 

To avoid this problem we have developed an 
extended contour tracing algorithm named 3A 
Tracing. In this method we use two stacks, Stack A 
and Stack B. The name 3A Tracing comes from the 
next three main phases (see Figure 5): 

Phase 1: Accumulation. The tracing is made 
analogue to the Contour Tracing algorithm. All 
accumulated points are pushed onto the stack A. The 
traversed points are marked with a flag in order to 
know whether they were traversed or not at least one 
time. Once we found a terminal point (from which 
the tracing is made in the inverse sense) we pass to 
the 2nd phase of the algorithm. 

Phase 2: Adjustment. In this phase the tracing 
continues in the inverse sense by extracting already 
passed points (drawn with light green) from the 
Stack A, and pushing them onto the Stack B. The 
Adjustment is repeated until we reach a contour 
point that has not passed yet. Once the new contour 
point is found we pass to the 3rd phase of the 
algorithm. 

Phase 3: Approximation. Polygonal 
approximation is applied to each of the two stacks. 
After the polygonal approximation process the two 
stacks will be cleared and the algorithm is repeated 
from the Phase 1. 

The algorithm stops when the start point is 
reached once again. 

 

 

Figure 5: 3A Tracing Algorithm. In the Accumulation 
phase, all traversed points are pushed onto the Stack A. In 
the Adjustment stage, the already passed points are 
extracted form the Stack A and pushed onto the Stack B. 
Polygonal approximation is applied in the last step of 
algorithm. 

Although the 3A Tracing algorithm eliminates 
some particular cases in which two polygonal 
segments may intersect, like in the Contour Tracing, 
it works only on the connected components. 
Therefore this method does not take into account the 

cases of more complex objects, when a single 
obstacle is represented as many disjoint 
patches.Therefore we have elaborated an extraction 
method through the radial scanning of the Elevation 
Map. 

3.2 The Border Scanner Algorithm 

The Border Scanner algorithm performs a radial 
scanning with a given radial step. The scanning axis 
moves in the radial direction, having a fixed center 
at the Ego Car position. The scanning process is 
made into the limits of Q_from and Q_to angles, 
thus only the interest area are scanned, where the 
delimiters can be detected (see Figure 6). Having a 
radial axis with a Qrad slope, Q_from < Qrad < 
Q_to, we try to find the nearest point from the Ego 
Car situated on this axis. In this way, all subsequent 
points will be accumulated into a Contour List, 
moving the scanning axis in the radial direction. At 
each radial step we verify that a new object has been 
reached. If a new label has been found then the 
polygonal approximation on the Contour List points 
is performed. The list will be cleared, and the 
algorithm will be continued finding a new polygon. 
 

 

Figure 6: Border Scanning on the Occupancy Grid Points. 



 

Advantages: The obtained results are more 
close to the real obstacle delimiters from the scene. 
The problem of the complex objects presented in the 
case of Contour Tracing algorithms is eliminated. 
Therefore many disjoint patches that belong to the 
same object can be enveloped by a single delimiter. 

Disadvantages: A little obstacle (noise present 
in the occupancy grid) can occlude a great part from 
the scene, if this obstacle is too near to the Ego-Car. 
The scanning is influenced by the presence of such 
false obstacles. 

3.2.1 The Border Scanning Algorithm Using 
Variable Step 

Having a constant radial step, the detected pixel 
density will decrease with the depth distance. The 
distance between two consecutive detected pixels is 
greater at the far depths. The idea is that some 
important information about the delimiters can be 
lost at the far distances. 

A good solution is to use a scanning method with 
a variable step, thus the radial step should be 
adapted with the distance. 

 

Figure 7: Radial angle estimation for the next step in the 
Variable Step Border Scanning approach. 

If we have a point P1(x1, z1) of a given object and 
a radial axis containing the point P1 with a radial 
angle Qk

rad at the k step, then we estimate the radial 
angle at the k+1 step (see Figure 7): 
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Where:   

� x1, z1 are the coordinates of the P1 point;; 
� xStart, zStart  are the ego-car point coordinates. 
� d is considered the distance between any two 

adjacent points. 
However, there are situations when no object 

point can be reached on the current scanning axis. 
Therefore we cannot estimate the radial angle for the 
next step, because we don’t know the distance of the 
current object point from the Ego-Car. In this case, 
like in the simple Border Scanning method, we use a 
fixed step, until a new object point will be found. 

3.2.2 The Combined Border Scanning 

We know that the occupancy grid cells are classified 
into obstacles (cars, pedestrians etc.) or traffic isles 
(road-parallel patches). If we take into account only 
the first nearest point from the car, many relevant 
objects delimiters may be omitted. For example, the 
first obstacle from the car can be a curb. In this case, 
we are interested not only in the curb delimiters but 
also in the delimiters above the curb or behind the 
curb. Therefore we extended our Border Scanning 
algorithm by developing a method that takes into 
consideration the obstacle’s nature making a 
decision based on two types of information “What 
have we found?” and “What we have to find?”. The 
algorithm consists in two passes: one for the object 
delimiters detection, and second for the traffic isles 
delimiters detection. 

In the Table 1 is presented the returned result 
when we want to find a delimiter taking in account 
the point type we have found. 

Table 1: The Combined Border Scanning method. The 
result is returned, taking into consideration the found point 
type. 

Delimiter’s type 
we want to find 

Point Type we 
have found 

Returned result 

OBJECT OBJECT FOUND 
CURB OBJECT NOT FOUND 
CURB CURB FOUND 

4 EXPERIMENTAL RESULTS 

For the experimental results we have tested a set of 
15 scenarios from the urban traffic environment 
using a 2.66GHz Intel Core 2 Duo Computer with 
2GB of RAM. 

Figure 8 shows a comparative result between the 
Contour Tracing and 3A Tracing algorithms, using 



 

an approximation error of two points. One can notice 
that the polygonal segment intersection in the case 
of classical contour tracing algorithm (see Figure 
8.b) was eliminated by applying the 3A Tracing 
algorithm (see Figure 8.c). 

 

 

Figure 8: Delimiters detection through the Contour 
Tracing algorithm (b) and 3A Tracing algorithm (c). The 
detection is performed on the occupancy grid computed 
from the scene (a). 

The difference between the result of delimiters 
detection in the case of Simple border Scanner and 
Combined Border Scanner algorithms is presented in 
the Figure 9. It can be observed that in the case of 
Combined Border Scanner (see Figure 9.b) the side 
fence’s delimiter is detected in spite of his position 
behind the curb (Figure 9.c). 

 

 

Figure 9: Border scanning of a scene (a). The side fence’s 
delimiters are missed in the case of the Simple Border 
Scanning (b) and have been detected in the case of the 
Combined Border Scanning algorithm (c). 

In the Table 2 the results from the Variable Step 
Border Scanner and Fixed Step Border Scanner are 
computed for the same driving scene. It can be 
observed that the number of detected points is 
greater in the case of Variable Step Border Scanner 

algorithm, thereby 11466 points, which means 28 
detected points per frame in comparison with 22 
detected points per frame in the case of Fixed Step 
Border Scanner algorithm. 

Table 2: Fixed Step Border Scanner vs. Variable Step 
Border Scanner. 

 
Fixed Step 

Border 
Scanner 

Variable Step 
Border 
Scanner 

Number of Frames 406 406 
Detected points 9058 11466 
The radial step 

(radians) 
0.01 variable 

Points per Frames 22 28 
Average processing 

time per frame 
4 ms 5 ms 

 
The average extraction time using the 3A 

Tracing algorithm is about 0.7ms per frame and 
depends on the angular resolution in the case of 
Border Scanner approach.  

 

 

Figure 10: the processing time vs. the radial step size. 

Figure 10 shows how the radial step size 
variation affects the system response time using the 
Combined Border Scanning approach. 

Figure 11 is a diagram that shows the impact of 
radial step size on delimiters detection rate using the 
border scanner method. We can observe that, with a 
higher radial step size we obtain an increase in 
processing time while the detection rate decreases. 
The solution is a tradeoff between the system 
processing time and detection rate.  

Figure 12 presents results for various traffic 
scenes using the Combined Border Scanning 
method. For the border scanning algorithm with a 



 

radial step of 0.01 radians the average processing 
time is about 5ms and the delimiters detection rate is 
98.66%. 

 

 

Figure 11: The detection rate vs. the radial step size. 

5 CONCLUSIONS 

In this paper we present and evaluate several 
methods for real-time environment representation 
through the object delimiter extraction and 
characterization from dense stereovision images. 
The delimiters detection is based on processing the 
information provided by a 3D classified occupancy 
grid obtained from the raw dense stereo information. 
The result is a more compact 2.5D model for 
representing the environment, as a set of polylines. 
Each polyline element inherits the type (object, 
curb), position and height properties of the 
associated object from the occupancy grid.  

We have developed an improved Contour 
Tracing method named 3A Tracing algorithm that 
eliminates the situation when two polygonal 
segments can intersect each other.  

Another approach presented in this paper is the 
polyline extraction through the radial scanning of the 
occupancy grid. Although the tracing approach is 
more computationally-efficient, the results provided 
by the Border Scanner algorithm are more 
appropriate for detecting the real obstacle delimiters 
from the scene. The algorithm is able to extract only 
the visible area from the ego-vehicle since the 
occluded points do not offer relevant information. 
Using the Border Scanner algorithm, our system is 
fast and achieves a high rate of detection: 98.66%. 
 

 

 

 

 

 

 

 

Figure 12: Object delimiters detection through the 
Combined Border Scanning algorithm for various traffic 
scenes. The delimiters are projected onto the Left Image 
and are represented as grids labeled as Traffic Isles 
(orange) or Objects (light green). The grid height is the 
same as the enveloped object by the current delimiter. 
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